
Improvements to RISC-V Vector
code generation in LLVM

Luke Lau, Alex Bradbury
RISC-V Summit Europe 2025

RVV codegen development

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● Basic experimental RVV enablement ✅
● Enablement of RVV codegen by default ✅
● Expansion of additional RVV extension support ✅
● Further tuning of performance of generated code ← We are here

Improving RVV code
generation

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● Objective: faster execution time!

● Might be achieved by:

○ Avoiding vectorisation when it isn’t profitable

○ Reducing overhead such as CSR switching

○ Minimising spilling

○ Better exploiting capabilities of RVV

○ …..

Note: this talk gives an overview of recent improvements covering contributions from

many companies.

Non-power-of-two
vectorization

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● Unique to RVV, the vl vector length register can handle vectors of

arbitrary (not just power of two) sizes

● New in LLVM 20: Support for non-power-of-2 vector widths in the

SLP (Superword Level Parallelism) vectorizer

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

struct rgb { float r,g,b; };
void brighten(struct rgb *x, float f) {
 x->r *= f;
 x->g *= f;
 x->b *= f;
}

vsetivli zero, 2, e32, mf2, ta, ma
vle32.v v8, (a0)
flw fa5, 8(a0)
vfmul.vf v8, v8, fa0
fmul.s fa5, fa0, fa5
vse32.v v8, (a0)
fsw fa5, 8(a0)

vsetivli zero, 3, e32, m1, ta, ma
vle32.v v8, (a0)
vfmul.vf v8, v8, fa0
vse32.v v8, (a0)

clang -O3 -march=rva23u64 clang -O3 -march=rva23u64 -mllvm -slp-vectorize-non-power-of-2

Non-power-of-two
vectorization

vl tail folding

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● GCC already performs tail folding

○ => Avoid the need for a separate loop to handle the “tail” in a stripmined loop by

using the vl register.

○ LLVM catching up to enable by default

● Allows elimination of minimum trip count

○ Previously needed at least VLMAX elements to take vector loop

○ vl tail folding can take vector loop for < VLMAX elements

○ Big improvement on some benchmarks e.g. e8 loops on x264!

● vl on second to last iteration breaks many assumptions about predication

○ ceil(AVL / 2) ≤ vl ≤ VLMAX if AVL < (2 * VLMAX)

vl tail folding

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

 vsetvli a2, zero, e32, m2, ta, ma
.vector_body:
 vl2re32.v v8, (a5)
 vadd.vi v8, v8, 1
 vs2r.v v8, (a5)
 add a5, a5, a3
 bne a5, a4, .vector_body
 beq a1, a6, .exit
.middle:
 sh2add a2, a6, a0
 sh2add a0, a1, a0
.scalar_tail:
 lw a1, 0(a2)
 addi a1, a1, 1
 sw a1, 0(a2)
 addi a2, a2, 4
 bne a2, a0, .LBB0_7

.vector_body:
 sub a5, a1, a3
 sh2add a2, a3, a0
 vsetvli a5, a5, e32, m2, ta, ma
 vle32.v v8, (a2)
 sub a4, a4, a6
 vadd.vi v8, v8, 1
 vse32.v v8, (a2)
 add a3, a3, a5
 bnez a4, .vector_body
 ret

NEW clang -O3 -march=rva23u64
-mllvm -force-tail-folding-style=data-with-evl
-mllvm
-prefer-predicate-over-epilogue=predicate-else-scalar-epilogue

clang -O3 -march=rva23u64

libcall expansion

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● RVV can efficiently perform common operations like memcpy and memcmp

● Expanding inline to

○ Avoid function call overhead.

○ Avoid potentially costly spilling given lack of callee saved vector registers in

standard calling convention.

○ Generate specialised version of the code (e.g. alignment, size known).

libcall expansion

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

int equal(char *a, char *b) {
 return memcmp(a, b, 16) == 0;
}

equal:
 vsetivli zero, 16, e8, m1, ta, ma
 vle8.v v8, (a0)
 vle8.v v9, (a1)
 vmsne.vv v8, v8, v9
 vcpop.m a0, v8
 seqz a0, a0
 ret

NEW clang -O3 -march=rva23u64

void *copy(char *a, char *b) {
 return memcpy(a, b, 16);
}

copy:
 vsetivli zero, 16, e8, m1, ta, ma
 vle8.v v8, (a1)
 vse8.v v8, (a0)
 ret

clang -O3 -march=rva23u64

Improving codegen for
newer RVV extensions

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● Minimal vector FP16 support added in Zvfhmin

● Minimal vector BF16 added in Zvfbfmin with widening mul-add in Zvfbfwma

● Need to teach LLVM to generate code for these extensions.

○ Ensure we widen to f32 when profitable.

○ Cost model adjustment needed.

Loop vectorizer f32 widening

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

void f(float *dst, __bf16 *a, __bf16 *b) {
 for (int i = 0; i < 1024; i++)
 dst[i] += ((float)a[i] * (float)b[i]);
}

 vsetvli t4, zero, e16, m1, ta, ma
.LBB0_4:
 vl1re16.v v8, (t3)
 vl1re16.v v9, (t2)
 vl2re32.v v10, (t1)
 vfwmaccbf16.vv v10, v8, v9
 vs2r.v v10, (t1)
 add t3, t3, a4
 add t2, t2, a4
 sub t0, t0, a6
 add t1, t1, a7
 bnez t0, .LBB0_4

clang -O3 -march=rva23u64● Better support for

○ FP16 w/ zvfhmin

○ bfloat16 w/ zvfbfmin + zvfbfwma

● Widens to f32: care needed to be taken with

register pressure!

Other improvements

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● vl optimizer pass

○ Reduces vl to only what is demanded

○ Useful for uarchs that dispatch uops dynamically on vl, not LMUL

● RVV support in llvm-exegesis

○ LLVM’s tool for automatic benchmarking of microarchitectures

○ Can generate scheduling models for LLVM to use

○ Iterates over all SEW/LMUL/vl/tail policy/mask policy combinations

● vsetvli insertion moved to post register allocation

○ vsetvli acts as a scheduling barrier everytime vtype changes

○ Enables more aggressive scheduling pre register allocation

Improvements to RISC-V Vector Codegen in LLVM
8.7% geomean improvement

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

Testing

● New CI builders added.

● Targeting new experimental

vector configs, e.g. with tail

folding.

https://igalia.github.io/riscv-llvm-ci/

https://igalia.github.io/riscv-llvm-ci/

Future work

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● Smoothing out and enabling more features by default

● Dynamically selecting LMUL in the loop vectorizer

○ Infrastructure to calculate register pressure recently landed

● Early exit vectorization

○ Initial support landed in loop vectorizer via masking

○ Needs support for fault-only-first loads

● Default generic RVV scheduling model

○ In-order cores really need it, especially at higher LMUL

○ Needs to be agreeable: Will affect all of -march=rva23u64

● Many contributors made this possible

● Andes, ByteDance, Google, Igalia, RISE, Rivos, Samsung, SiFive, SpacemiT,

Syntacore, Qualcomm and more!

Questions? asb@igalia.com, luke@igalia.com

Thank you

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

Overflow

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

Challenges

Improvements to RISC-V Vector Codegen in LLVM
Alex Bradbury, Luke Lau, RISC-V Summit Europe 2025

● Performance is highly variable per µarch

○ Some scale with vl, others with EMUL, some quadratically e.g. vrgather.vv

○ Exotic memory operations aren’t yet optimal in hardware, e.g. strided/indexed

● Register grouping with LMUL introduces a lot of constraints

● Much of underlying infrastructure originally designed with VLS

○ VLA support is beginning to mature thanks to shared infrastructure with

AArch64 SVE

● RVV implementations are highly customizable

○ Need to support zvl32b all the way up to zvl65536b

○ True test of RISC-V’s unique extensibility!

